MORGELLONS : pH, CONDUCTIVITY, IONS & LIVE ANALYSIS

MORGELLONS : pH, CONDUCTIVITY, IONS & LIVE ANALYSIS

All work thus far indicates that the culture forms under examination encompass primary pathogenic forms that are in association with the so-called "Morgellons" condition. These are the the encasing filament, the chlamydia-like organism, the mycoplasma-like (pleomorphic) organism and under certain conditions, the erythrocytic (red blood cell) form. This list does not exclude current or future discoveries by any party that are sufficiently documented, but this list is inclusive as of this date.
pH DATA CONFLICT

pH DATA CONFLICT

A report from the United States Geological Survey outlining the pH conditions across the US are in direct contrast to those readings that US citizens are reporting. Both sets of reports are included in this work showing the two different pH reading reports from both sources. If such a conflict does indeed exist, this will further intensify the need and demand for independent professional conduct and verification of pH rainfall test results across the entire US.
ATMOSPHERIC SALT CONFIRMED

ATMOSPHERIC SALT CONFIRMED

It has been deduced and established from earlier Carnicom work and research (see earlier papers ‘A Case for Testing’ ‘Eight Conditions’, ‘Drastic pH Conditions’, ‘pH Test Alert’, ‘20 Times’, and ‘pH Test Results’) that a case for testing the atmosphere, water, and soil for alkaline salts exists. Testing of rainwater samples across the United States shows an approximate twenty fold increase in the level of hydroxide ions found in rainwater in the year 2000 versus a baseline period from 1990-1999. This paper discusses an experiment where electrical current applied to rainwater samples results in a chemical reaction that proves the presence of an electrolyte (salt form).
20 TIMES

20 TIMES

This paper outlines the 20 fold increase in the concentration of hydroxide ion concentration in the atmosphere of the United States. Recent and preliminary pH test data from across the nation indicates that this increase has happened when comparing baseline data from 1990-1999 data with that of 1999. This significant change in a relatively short time frame has major implications for both the chemistry and biology of the nation and the planet at large.
EIGHT CONDITIONS

EIGHT CONDITIONS

Further exploring the need for increased testing of rainwater for pH is the subject of this paper. Eight conditions for identifying components of aerosol particulates are presented as hypotheses that if proven true will help identify these particulates being salts and trace metals such as barium and strontium.
pH TEST ALERT

pH TEST ALERT

This paper makes the case for increased testing of pH levels in in rainwater by US citizens. At this point, there are indications that significant alterations in atmospheric chemistry have occurred due to aerosol operations. A pH test from Santa Fe, New Mexico yielded a fairly significant deviation from what was expected and is presented as an additional reason for rainwater testing.
A CASE FOR TESTING

A CASE FOR TESTING

A logical case has been developed within this article to substantiate the need for environmental testing of barium or barium compounds in our water, air and soil based on the progression of the following: 1)Meteorological studies of aerosol particulates being introduced into the atmosphere 2)Information from a highly credible source 3)Chemistry analysis of barium and barium compounds 4)pH testing of rainwater for alkalinity/acidity 5)Collection of physical samples after aerosol spraying 6)Testing of collected samples against a hypothesis that these samples are barium based 7)Solubility and equilibrium considerations of barium and barium compounds 8)Environmental testing (water, soil, air)
RAINFALL pH TEST REPORTS

RAINFALL pH TEST REPORTS

This paper shows comparisons of average measured rainfall pH levels across many different areas in the US during the years 1990, 1999, and 2000. There are small differences in average rainfall pH levels across the nation when the years 1990 and 1999 are compared for each region measured, but the year 2000 shows significant increases in pH levels over both years 1990 and 1999, with some increases upwards of 73% in the year 2000 over earlier 1990 levels. This depicts a large change in atmospheric chemistry across many regions of the US in 2000 over earlier years.